Exploring Space - Feb 2016

Solar System Tour

Starting in the center...

Our Sun, the closest star to Earth!

At a mere 93 million miles distant, it takes light from the Sun only eight minutes to arrive on Earth.

The next closest are three members of Alpha Centauri and are just over 4 light years from Earth.

This is what our sun looks like from space

Ionized Iron and Magnetic Fields on surface of the Sun (SDO)

Mercury

- Distance From Sun: 36 Million Miles
- Average Temp: $332^{\circ} \mathrm{F}$
- Low: $-270^{\circ} \mathrm{F}$
- High: $+800^{\circ} \mathrm{F}$
- Diameter: 3,000 miles
- Orbital Period: 88 days
- Rotation: 58 days
- Atmosphere: trace
- Moons: 0

MESSENGER

Mission to Mercury

August 2004 - Launch
March 2011 - Mercury Orbit

- 100\% of Mercury imaged

Now - Awaiting $2^{\text {nd }}$ mission extension

Mercury - High Resolution Mapping in Progress

Venus (in visible light)

- Distance From Sun: 67 Million Miles
- Average Temp: $867^{\circ} \mathrm{F}$
- Diameter: 7,500 miles
- Orbital Period: 225 days
- Rotation Period: 243 days
- backwards
-Atmosphere: very dense at 92 times denser than Earth's atmosphere
- Moons: 0

Under the clouds of Venus (Magellan images)

- Craters, volcanoes, mountain ranges, canyons, and more..
- 75% highlands / 25% lowlands, could not sustain an ocean.

Magellan
 Radar Mapping Mission 1990-1994

Earth

$3^{\text {rd }}$ Rock from the Sun

- Distance From Sun: 93 Million Miles
- Average Temp: $59^{\circ} \mathrm{F}$
- Diameter: 8,000 miles

Image credit: NASA/JPL-Caltech

Earth and Moon (to scale)

Image credit: NASA/JPL-Caltech

Earth (as seen from our moon)

Mars

Average Distance From Sun:
 142 Million Miles

- Average Temp: $-85^{\circ} \mathrm{F}$
- Surface Temp: $-220^{\circ} \mathrm{F}$ to $+80^{\circ} \mathrm{F}$
- Atmosphere: 1% of Earth
- Diameter: 4,200 miles
- Orbital Period: 1.9 years
- Rotation: 24.7 hours
- Moons: 2

Deimos -Mars smallest moon (8 miles diameter)

Phobos - Mars biggest moon (14 miles diameter)

Escape Velocity: 24 mph

March 3, 2010:
Previous flybys of Phobos have shown that it is not dense enough to be solid all the way through.

It must be $25-35 \%$ porous.
This has led planetary scientists to believe it is a dust covered 'rubble pile' circling Mars, or is hollow, or has caverns.

Mars, as seen from Phobos

Mars Odyssey

Launched: April 7, 2001
MOI: October 24, 2001
Controlled from Denver, CO

Major Instruments:

- Thermal Emission Imaging System (THEMIS)
- Gamma Ray Spectrometer (GRS)
- Mars Radiation Environment Experiment (MARIE)

$$
=2
$$

Melas - The Grand Canyon of Mars

Wer
ur

ST20

En

Olympus Mons

Largest Volcano in our Solar System: 100,000 feet tall

2007 - Very Dark Craters ?????

The very dark, nearly circular features range in diameter from 328 to 820 feet.

Mars Reconnaissance Orbiter (MRO)

Launched: August 12, 2005
Arrived: March 10, 2006
10x resolution over Odyssey Controlled from Denver, CO

Major Instruments:

- Context Camera (CTX)
- Mars Color Imager (MARCI)

- High Resolution Imaging Science Experiment (HiRISE)
- Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)
- Shallow Radar (SHARAD) (can see up to $\mathbf{1 k m}$ into ground)

Cave Entrance on Mars

Face on Mars

Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars. L. Ojha et al., Nature Geoscience, 28 September, 2015

MAVEN

Launched: Nov 18, 2013
Mars Orbit: Sept 21, 2014 Controlled from Denver, CO

Mars' loss of its protective magnetic field may have triggered the loss of its atmosphere.

Mars Atmosphere and Volatile Evolution Mission (MAVEN) will explore Mars' upper atmosphere, ionosphere and how it interacts with the Sun. The spacecraft will determine why Mars lost the denser surface atmosphere that once allowed it support the presence of liquid water on its surface.

Mars 1997

Launched: Dec 4, 1996
Landed: July 4, 1998
Lasted: 92 days

Size

- Small
- Length: 20 inches
- Height: 10 inches

Sojourner

Image credit: NASA/JPL-Caltech

Mars Pathfinder Landing Site JULY 4, 1997

Sojourner on Mars

Mars 2003 Mars Exploration Rovers (MER)

Spirit:

Launched: June 10, 2003
Landed: January 4, 2004 at Gusev Crater
Got stuck at Troy 8/5/2009
Traveled 4.8 miles total
Last communication: 3/22/2010

Opportunity:
Launched: July 7, 2003
Landed: January 24, 2004 at Meridian Planum
Still rolling after more than 9.5 years
Traveled 14.3 miles so far
Next Destination: Solander Point

Image credit: NASA/JPL-Caltech

How Spirit and Opportunity got to Mars

Mars 1/25/2004 Opportunity on Mars

Opportunity checking out it’s landing airbag...

Opportunity finds a Meteorite

Opportunity finds Blueberries (Hematite Concretions)

In Southern Utah

On Mars

Image credit: NASA/JPL-Caltech

Sand Dunes

Opportunity finds Earth

You are here

Spirit's Landing Area on Mars

Spirit at Comanche Cliffs

Spirit stuck in white dry powder at Troy (final resting place)

Curiosity compared to previous rovers

Curiosity (MSL) Aeroshell

Gale Crater and Mount Sharp

Landed in Gale Crater in August 5, 2012 Mount Sharp in the crater

Curiosity Parachute by MRO (8/5/2012)

Mount Sharp in the distance

**** OFF 60 HOME !.!

10.08.2015

NASA's Curiosity Rover Team Confirms Ancient Lakes on Mars

Methane Emissions / Plumes

Methane release: Northern summer

Jan 19, 2009 - PASADENA, Calif. - A possible source of Methane Plumes is microbial life deep beneath the surface of Mars.
Are the methane concentrations observed evidence that life is currently present on the Red Planet? We do not yet know. But the regions where plumes of methane were detected on Mars now beckon to us, calling us to resolve their mystery. The next time we send out a spacecraft to the Red Planet to search for life, we will know exactly where to look.

- Launch: March 20162018
- Seismic Exp. for Interior Structure
-SEIS Failed TVAC Testing
-Can't be ready for $3 / 16$ window
- Heat Flow \& Physical Properties

Mars Insight lander

Curiosity 2.0

Asteroid Belt (gold colored specs)

- Distance From Sun: 260 Million Miles to center
- over 166,000 asteroids
- Largest:

Ceres $1 / 3$ of all mass 600 miles in diameter

Image credit: NASA/JPL-Caltech

Asteroid: Gaspra

$$
\begin{aligned}
& 1^{\text {st }} \text { ever close-up } \\
& \text { photo of an asteroid }
\end{aligned}
$$

Ida (35 miles long)

Hubble images of the two biggest asteroids

Ceres • January 24, 2004
HSTACS/HRC

Vesta - May 14, 2007 HST WFPC2

Largest Asteroid 330 mi dia

A "dwarf planet" is a celestial body that
a) is in orbit around the Sun,
b) has sufficient mass for its self-gravity to overcome rigid body forces (nearly round),
c) has not cleared the neighborhood around its orbit, and
d) is not a satellite.

Journey to the beginning of the Solar System with the Dawn mission. Travel with the Dawn spacecraft as it explores Vesta and Ceres: Current Mission.Status.

2011 Dawn arbits Uesta

2015 Dàmn. orbits Ceres'

Launch: 9/27/07
Mars Flyby: 2/17/2009
Orbit Vesta: 7/15/2011
Depart Vesta: 9/4/2012
Orbit Ceres: Spring 2015

Asteroid: Vesta Close-up Images

Looking Behind: Asteroid: Vesta - 326 miles in diameter This photo taken Sept 5, 2012 as Dawn left Vesta's orbit

Looking Ahead: Asteroid: Ceres - 590 miles in diameter This photo taken Dec 1, 2014 from 740,000 miles

Looking Ahead: Asteroid: Ceres - 590 miles in diameter These photos taken Feb 12, 2015 from 52,000 miles

Asteroid: Ceres - 590 miles in diameter

Ceres - Two mysterious bright spots?

Ceres - Feb 25, 2015

Ceres - June, 2015

Near-Earth Asteroid 101955 Bennu

1,900 ft diameter

OSIRIS-Rex (mission to Bennu)

Origins Spectral Interpretation Resource Identification Security Regolith Explorer

Asteroid Sample/Return Mission
Launch: Sept, 2016
Asteroid Orbit: 2019
Asteroid Sample: 2020
Earth Return: 2023

Jupiter

- Distance From Sun: 483 Million Miles
- Average Temp: $-166^{\circ} \mathrm{F}$
- Diameter: 88,000 miles
- Orbital Period: 12 years
- Moons: 67

Galileo

Launch: 1989
 Orbit Jupiter: 1995
 Mission End: 2003

First two years focused on Jupiter.
Extended mission (6 years) focused on Jupiter's moons, with emphasis on Europa, Callisto, Ganymede, and lo.

4 of Jupiter's 61 moons

Europa

3 with Liquid Oceans?

Ganymede

Imagine if Earth had 61 moons

Volcanic Eruption on IO

Europa
 Ice - $\mathbf{3}$ miles thick with liquid salt water ocean beneath

Europa

- Ice - 3 miles thick with
- Liquid salt water ocean beneath ($40-100$ miles deep)

JUNO - Launched August 5, 2011 Polar Orbit of Jupiter

Solar Powered

Arrives at Jupiter: July 4, 2016

- Distance From Sun: 888 Million Miles
- Average Temp: $-220^{\circ} \mathrm{F}$
- Diameter: 75,000 miles
- Orbital Period: 29 years
- Moons: 62

Cassini and Huygens

Mission to Saturn and its largest moon Titan.

Launch: 10/15/1997

Orbit Saturn: 7/1/2004

Huygens Release: 12/2004
Landed on Titan: 1/12/2005

Rings in true color

Cassini snaps a photo of Earth

On 7/19/2013, earthlings were told to go outside and wave at the sky. Cassini took the photo. Shall we zoom in?

What causes the gaps in the Saturn rings?

A moon in the rings (where are the ripples?)

Cassini Images of Saturn Moons

Hyperion

Dione

Evidence of liquid ocean under ice

Evidence of trace atmosphere and liquid ocean under ice.

Water plumes shooting from Enceladus south pole

Images of Saturn's moon Titan

Dense atmosphere

Continents/Oceans visible?

Hubble Image

Cassini Image

Huygens' Descent

Lake Shore?

Liquid flow erosion on Titan

Huygens Probe image from
the Surface of Titan

Liquid Hydrocarbon Lakes on Titan

Size: Titan Sea vs. Earth's Lake Superior

Titan Mare Lander

Mission to land a boat on the seas of Titan

Uranus

- Distance From Sun: 1.8 Billion Miles
- Average Temp: $-319^{\circ} \mathrm{F}$
- Diameter: 32,000 miles
- Orbital Period: 84 years
- Rotation Period: 17 hrs (560 mph winds)
- Moons: 27

Neptune

- Distance From Sun: 2.8 Billion Miles
- Average Temp: $-328^{\circ} \mathrm{F}$
- Diameter: 31,000 miles
- Orbital Period (year): 165 years (slow)
- Rotation Period:19 hrs (1,300 mph winds)
- Moons: $13-14$ (7/2013)

Pluto (1978)

- Distance From Sun: 3.7 Billion Miles
- Average Temp: $-400^{\circ} \mathrm{F}$
- Pluto diameter: 1,500 miles, Charon diameter: 750 miles
- Orbital Period: 248 years
- Moons: 1 (known in 1978)
- Charon found in 1978

Charon

Pluto

Hubble Best View

Pluto (7/1/2013)

Introducing: Styx and Kerberos

Pluto Moons: Now at 5

- Charon found in 1978
- Nix and Hydra found in 2005
- Kerberos found in 2011
- Styx found in 2012

NASA, ESA, and M. Showalter (SETI Institute)

New Horizons (Pluto-Kuiper Belt Mission)

Launched: Jan 17, 2006

Pluto - July 6, 2015

Pluto - July 13, 2015

Image credit: NASA/JPL-Caltech

Charon - July 14, 2015

Image credit: NASA/JPL-Caltech

Nix and Hydra - July 14, 2015

New Horizons KBO Flyby - 2018/2019

Far beyond Pluto, a possible Planet Nine

Planet 9

- 56 billion miles from sun
- 5,000 times mass of Pluto
- 20,000 years per orbit
- meets planet definition

Kuiper Belt

Announced 9/12/2013:

Voyager 1 officially crossed Heliopause into interstellar space on, or about, 8/25/2012. Voyager 2 appears to be about 3 years behind and is still in the Heliosheath.

If someone/something finds Voyager someday, what would you want them to know about us, and about life on earth?

The Gold Record (mounted on Voyager 1 \& 2)

What's on the record?

- Scenes from Earth
- 115 images
- Music from Earth
- 27 songs
- Sounds from Earth
- 21 collections
- Greetings From Earth
- in 55 languages
- Printed Messages
- President Carter
- UN Sec Gen Waldheim

Scenes from Earth

Image credit: NASA/JPL-Caltech

Music from Earth

Composer/Location, Artist/Performer, Time Length

Bach, Brandenburg Concerto No. 2 in F. First Movement, Munich Bach Orchestra, Karl Richter, conductor. 4:40 Java, court gamelan, "Kinds of Flowers," recorded by Robert Brown. 4:43
Senegal, percussion, recorded by Charles Duvelle. 2:08
Zaire, Pygmy girls' initiation song, recorded by Colin Turnbull. 0:56
Australia, Aborigine songs, "Morning Star" and "Devil Bird," recorded by Sandra LeBrun Holmes. 1:26
Mexico, "El Cascabel," performed by Lorenzo Barcelata and the Mariachi México. 3:14
"Johnny B. Goode," written and performed by Chuck Berry. 2:38
New Guinea, men's house song, recorded by Robert MacLennan. 1:20
Japan, shakuhachi, "Tsuru No Sugomori" ("Crane's Nest,") performed by Goro Yamaguchi. 4:51
Bach, "Gavotte en rondeaux" from the Partita No. 3 in E major for Violin, performed by Arthur Grumiaux. 2:55 Mozart, The Magic Flute, Queen of the Night aria, no. 14. Edda Moser, soprano. Bavarian State Opera, Munich, Wolfgan Georgian S.S.R., chorus, "Tchakrulo," collected by Radio Moscow. 2:18
Peru, panpipes and drum, collected by Casa de la Cultura, Lima. 0:52
"Melancholy Blues," performed by Louis Armstrong and his Hot Seven. 3:05
Azerbaijan S.S.R., bagpipes, recorded by Radio Moscow. 2:30
Stravinsky, Rite of Spring, Sacrificial Dance, Columbia Symphony Orchestra, Igor Stravinsky, conductor. 4:35
Bach, The Well-Tempered Clavier, Book 2, Prelude and Fugue in C, No.1. Glenn Gould, piano.
Beethoven, Fifth Symphony, First Movement, the Philharmonia Orchestra, Otto Klemperer, corgugtoe7 7:20
Bulgaria, "Izlel je Delyo Hagdutin," sung by Valya Balkanska. 4:59
Navajo Indians, Night Chant, recorded by Willard Rhodes. 0:57
Holborne, Paueans, Galliards, Almains and Other Short Aeirs, "The Fairie Round," performed by David Munrow and th Solomon Islands, panpipes, collected by the Solomon Islands Broadcasting Service. 1:12

Sounds From Earth

- Tame Dog
- Tractor, Riveter
- Chimpanzee
- Mud Pots
- Tractor, Bus, Auto
- Music of the Spheres
- Volcanoes, Earthquake, Thunder
- Wind, Rain, Surf
- Crickets, Frogs
- Birds, Hyena, Elephant
- Wild Dog
- Footsteps, Heartbeat, Laughter
- Fire, Speech
- The First Tools
- Herding Sheep, Blacksmith, Sawing
- Morse Code, Ships
- Horse and Cart
- Train
- F-111 Flyby, Saturn V Lift-off
- Kiss, Mother and Child
- Life Signs, Pulsar

Greetings From Earth

- Akkadian
- Amoy (Min dialect)
- Arabic
- Aramaic
- Armenian
- Bengali
- Burmese
- Cantonese
- Czech
- Dutch
- English
- French
- German
- Greek
- Gujarati
- Hebrew
- Hindi

- Hittite
- Hungarian
- Lla
- Indonesian
- Italian
- Japanese
- Kannada
- Kechua
- Korean
- Latin
- Luganda
- Mandarin
- Marathi
- Nepali
- Nguni
- Nyanja
- Oriya
- Persian
- Polish
- Portuguese
- Punjabi
- Rajasthani
- Romanian
- Russian
- Serbian
- Sinhalese
- Sotho
- Spanish
- Sumerian
- Swedish
- Thai
- Turkish
- Ukranian
- Vietnamese
- Welsh
- Wu

Oort Cloud (home of comets)

- Extends out more than light year from the sun

The Oort Cloud (comprising many billions of comets)

Short Period Comets
 (Dirty Snow Balls from the Kuiper Belt)

Temple 1

Wild 2

Rosetta

Comet 67P/Churyumov-Gerasimenko (6 Year Orbits around the sun)

ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Philae photo of comet just before touchdown...

March 28 high res photo (1.7m/pixel)

What if the planets were side by side?

A medium sized star:

Arcturus

Jupiter Our Sun

A large star:

Antares

Our Sun Arcturus

Milky Way Galaxy - As seen from Colorado

You are Here!

Kepler Space Telescope - NASA's Planetary Transit Champion

Light Curves of a Star During Planetary Transit

Prime Mission ended 8/19/2013

K2 Extended Mission in Progress

Exoplanet Count 2/19/2016

Candidates: 3,701
Confirmed: 1,941
Total Exoplanets: 5,642
85\% by Kepler

GJ-504b, a "cherry blossom" planet orbiting a hot young sun - 57 light years from Earth

Kepler Mission Discovers Worlds Orbiting Two Stars

Kepler-16b - (9/15/2011)
Kepler-34b and Kepler-35b (1/11/2012)
Kepler-38b (Aug 20, 2012)
Kepler 47b and 47c (Aug 28, 2012)

Tatooine from Star Wars:)

PH1 - a Neptune-size planet in a 4 star system (2012)

- 2 stars in center orbiting each other every 20 days
- Exoplanet PH1 orbits binàry stars every 138 days.
- 2 more stars
orbiting binary stars at 1,000 au

Hubble finds GJ1214b "Water world" 2/21/2012 - A whole new type of planet?

Current Planet Types

- Rocky and Terrestrial (like Mars and Earth)
- Gas Giants (like Jupiter and Saturn)
- Ice Giants (Like Uranus and Neptune)

GJ1214b

- 2.7 x Earth's diameter
- Orbits red-dwarf star every 38 hours
- Surface Temp is 450 degrees F
- Density is $2 \mathrm{~g} / \mathrm{cm}^{3}$
- Earth density is $5.5 \mathrm{~g} / \mathrm{cm}^{3}$
- Data is consistent with dense water vapor atmosphere

Exoplanet 55 Cancri e twice Earth's Size *- and made largely of diamond Oct 12, 2012 - Wired UK

Goldilocks/Habitable Zone (where liquid water could exist)

The habitable zone around some stars with planets

Gliese 832 c

Best Habitable World Candidate so far... Same average energy as Earth from the SuI Earth-like temperatures Earth-like terrestrial atmosphere but...
5 times mass of Earth

Kepler-186f Earth-like and in Habitable Zone (April 17, 2014)

- 490 light-years from Earth
- Orbits it's star every 130 days

Spectroscopy - can determine if exoplanet has atmosphere and if yes, can analyze Exoplanet atmospheres during the transit

Starlight filters through the planet's sodium-richatmosphere.
absorption line spectrum

HAT-P-11b Sept 24, 2014 - A Neptune sized exoplanet with...

 water vapor molecules detected in the planet's clear atmosphere
Summary: What We Have Found So Far...

5,642 Exoplanets
In small circle area

Milky Way Estimates Stars: 100-700 Billion

Planets: At least 500 Billion
Earth-like in Habitable Zone: >20 Billion

Galaxy Count: >125 Billion

Earth-like Habitable Zone Planets:
$2,500,000,000,000,000,000,000$

HUBBLE Space Telescope

$1^{\text {st }}$ of 4 Great Observatories Launched 24 April 1990

Images credit: NASA/JPL-Caltech

Spiral Galaxy M8I

Two Galaxies Colliding


```
The Cat's Eye Nebula - NGC 6543 (%) HUBBLESITE.org
```

So..........How good is Hubble?

After servicing......How good is Hubble?

No Earth-based telescopes can see anything in the red square, so... let's have Hubble look there

James Webb - 2018 (will be parked at L2)

Hubble's Deep Core Sample of the Universe

Oldest

Year
2004
2009

2012 Hubble eXtreme Deep Field
2018 James Webb Space Telescope
Image Name
Hubble Deep Field
Hubble Ultra Deep Field

	Oldest
Total Exposure	Galaxy Age
11.3 days	12.9 B years
Added Infrared	13.0 B years
22 days	13.2 B years
<4 days	13.5 B years

The Universe

Age of the Universe		
Year	Source	Age (Years)
1700	Isaac Newton	6,000
1929	Edwin Hubble	2 B
1955	Walter Baade	6 B
1965	Alan Sandage	$15-25 \mathrm{~B}$
1993	Hubble Telescope	$12-20 \mathrm{~B}$
1997	Hubble Telescope	$13-14 \mathrm{~B}$
2006	Hubble Telescope	13.7 B
2012	WMAP Probe	13.77 B
2013	Planck Telescope	13.82 B

Composition of Universe		
Ordinary Stuff	Dark Energy	Dark Matter
4.60%	71.40%	24.00%
4.90%	68.30%	26.80%

Human Exploration Update
cockneomantint

Why Human Exploration?

International Space Station (ISS)

This is the furthest we have gone in 42 years

The Old: Space Shuttle (now retired)

The New - Exploration Systems Development

- Orion Progrom
- Space Launch System (SLS)
- Ground System Development

Orion

Objective:

Launch Abort System

- Protection for the CM
- Jettison after first stage flight

Take humans safely beyond LEO ...
 ... and return them safely back to Earth

Crew Module

Image Credit: Lockheed Martin

Completed Orion Demonstrations

- Launch Abort System
- Parachute Deployment
- Landing \& Recovery
- Human Factors - Suits
- Acoustic Vibration
- Up-righting Şstem
- Hardware/Software Integration
- Controls Evaluation
- Thermal Protection Systems
- Proof Pressure \& Structural Loads
- Power-on

Orion Pad Abort Test (2010)

Eningces crew safety by providing crew escape capability in the event of pad or ascent emergencies

Expands the envelope of survivable abort condifions over previous abort systems by providing active attitude control during aborts.

Service Module Fairing Separation Test

Parachute Drop Tests

HIB Drop Tests

Image Credit: NASA

Forward Bay Cover Separation Test

Image Credit: NASA

Recovery Testing Complete

Crew Ascent Simulations

Mission Control Center Ready

JOHNSON SPACE CENTER, TX
Image Credit: NASA

Orion Exploration Flight Test - 1

America's first space vehicle specifically designed for human deep space exploration

Launched on a Delta IV Heavy Rocket on Dec 5, 2014

The beginning of a new era in human space flight

Will travel to interplanetary destinations on the NASA Space Launch System (SLS)

Exploration Flight Test - 1

TWO ORBITS © 20,000 MPH ENTRY © 3,67I MILE APOGEE © 23.6 DEGREE INCLINATION

2014

Re-Entry

9

Image Credit: NASA

US Navy Well Deck ship (Pacific Ocean)

Successful Retrieval

Cross-Country Road Trip

Orion back at KSC

What's Next? Orion Mission Timeline

Stepping Stones

A series of exploration missions building incrementally towards the long term goal of exploring Mars.

Each mission will address science objectives relating to the formation of the solar system and the origins of life.

Red Rocks: explore Mars from Deimos

Plymouth Rock: Humans
explore asteroids like 1999
AO10 and 2000 SG344

EM-2 Let's Finish with a ride on Orion

